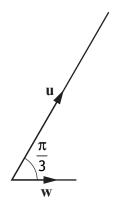
- 1. Functions f and g are defined on suitable domains by f(x) = 5x and $g(x) = 2\cos x$.
 - (a) Evaluate $f(g(\mathbf{0}))$.
 - (b) Find an expression for g(f(x)).
- 2. The point P (-2, 1) lies on the circle $x^2 + y^2 8x 6y 15 = 0$. Find the equation of the tangent to the circle at P.

3. Given
$$y = (4x - 1)^{12}$$
, find $\frac{dy}{dx}$.

4. Find the value of k for which the equation $x^2 + 4x + (k-5) = 0$ has equal roots.

5. Vectors **u** and **v** are
$$\begin{pmatrix} 5\\1\\-1 \end{pmatrix}$$
 and $\begin{pmatrix} 3\\-8\\6 \end{pmatrix}$ respectively.

(b)



Vector w makes an angle of $\frac{\pi}{3}$ with u and $|w| = \sqrt{3}$. Calculate u.w.

3

MARKS

1

2

4

3

6. A function, *h*, is defined by $h(x) = x^3 + 7$, where $x \in \mathbb{R}$. Determine an expression for $h^{-1}(x)$.

7. A(-3, 5), B(7, 9) and C(2, 11) are the vertices of a triangle. Find the equation of the median through C.

8. Calculate the rate of change of
$$d(t) = \frac{1}{2t}$$
, $t \neq 0$, when $t = 5$. 3

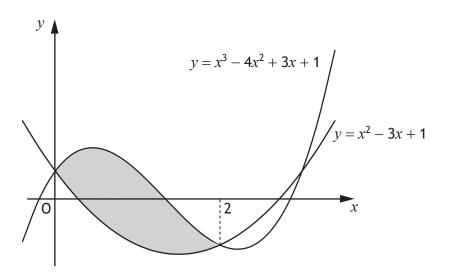
9. A sequence is generated by the recurrence relation $u_{n+1} = m u_n + 6$ where *m* is a constant.

(a)	Given $u_1 = 28$ and $u_2 = 13$, find the value	of <i>m</i> . 2	2
(b)	(i) Explain why this sequence approac	hes a limit as $n \to \infty$.	1
	(ii) Calculate this limit.	2	2

(ii) Calculate this limit.

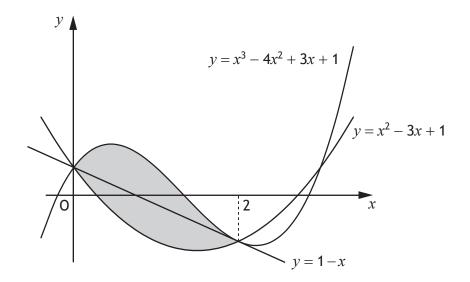
3

10. Two curves with equations $y = x^3 - 4x^2 + 3x + 1$ and $y = x^2 - 3x + 1$ intersect as shown in the diagram.



(a) Calculate the shaded area.

The line passing through the points of intersection of the curves has equation y = 1 - x.



(b) Determine the fraction of the shaded area which lies below the line y = 1 - x.

4

[Turn over

11. A and B are the points (-7, 2) and (5, *a*). AB is parallel to the line with equation 3y - 2x = 4. Determine the value of *a*.

12. Given that $\log_a 36 - \log_a 4 = \frac{1}{2}$, find the value of *a*.

13. Find
$$\int \frac{1}{(5-4x)^{\frac{1}{2}}} dx, \ x < \frac{5}{4}.$$

- 14. (a) Express $\sqrt{3} \sin x^\circ \cos x^\circ$ in the form $k \sin (x-a)^\circ$, where k > 0 and 0 < a < 360.
 - (b) Hence, or otherwise, sketch the graph with equation $y = \sqrt{3} \sin x^\circ \cos x^\circ$, $0 \le x \le 360$.

Use the diagram provided in the answer booklet.

3

3

4

3

1

15. A quadratic function, f, is defined on \mathbb{R} , the set of real numbers.

Diagram 1 shows part of the graph with equation y = f(x). The turning point is (2, 3).

Diagram 2 shows part of the graph with equation y = h(x). The turning point is (7, 6).

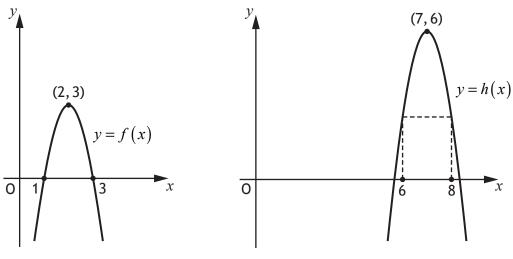


Diagram 1

Diagram 2

(a) Given that
$$h(x) = f(x+a)+b$$
.

Write down the values of a and b.

- (b) It is known that $\int_{1}^{3} f(x) dx = 4$. Determine the value of $\int_{6}^{8} h(x) dx$.
- (c) Given f'(1) = 6, state the value of h'(8).

[END OF QUESTION PAPER]

2

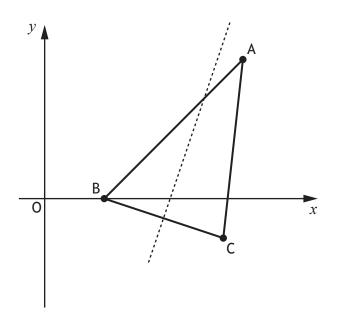
2

3

Attempt ALL questions Total marks — 70

1. Triangle ABC is shown in the diagram below.

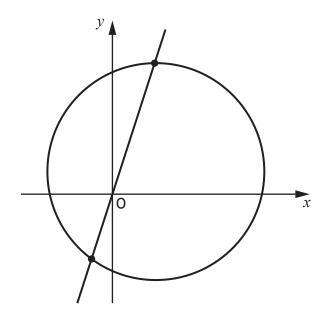
The coordinates of B are (3,0) and the coordinates of C are (9,-2). The broken line is the perpendicular bisector of BC.



- (a) Find the equation of the perpendicular bisector of BC.
- (b) The line AB makes an angle of 45° with the positive direction of the *x*-axis.Find the equation of AB.
- (c) Find the coordinates of the point of intersection of AB and the perpendicular bisector of BC.
- 2. (a) Show that (x-1) is a factor of $f(x) = 2x^3 5x^2 + x + 2$. 2
 - (b) Hence, or otherwise, solve f(x) = 0.

[Turn over

3. The line y = 3x intersects the circle with equation $(x-2)^2 + (y-1)^2 = 25$.



Find the coordinates of the points of intersection.

- 4. (a) Express $3x^2 + 24x + 50$ in the form $a(x+b)^2 + c$.
 - (b) Given that $f(x) = x^3 + 12x^2 + 50x 11$, find f'(x).
 - (c) Hence, or otherwise, explain why the curve with equation y = f(x) is strictly increasing for all values of x.

5

3

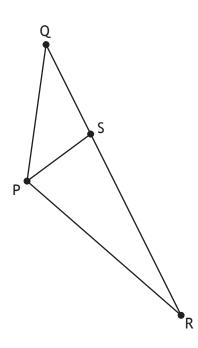
2

5

5

3

5. In the diagram, $\overrightarrow{PR} = 9i + 5j + 2k$ and $\overrightarrow{RQ} = -12i - 9j + 3k$.



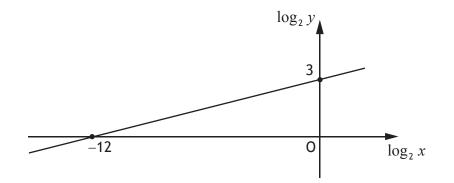
(a) Express \overrightarrow{PQ} in terms of **i**, **j** and **k**.

The point S divides QR in the ratio 1:2.

- (b) Show that $\overrightarrow{PS} = i j + 4k$. 2
- (c) Hence, find the size of angle QPS.
- 6. Solve $5\sin x 4 = 2\cos 2x$ for $0 \le x < 2\pi$.
- 7. (a) Find the *x*-coordinate of the stationary point on the curve with equation $y = 6x 2\sqrt{x^3}$.
 - (b) Hence, determine the greatest and least values of y in the interval $1 \le x \le 9$.

[Turn over

- 8. Sequences may be generated by recurrence relations of the form $u_{\scriptscriptstyle n+1} = k \, u_{\scriptscriptstyle n} - 20$, $u_{\scriptscriptstyle 0} = 5$ where $k \in \mathbb{R}$.
 - (a) Show that $u_2 = 5k^2 20k 20$. 2
 - (b) Determine the range of values of k for which $u_2 < u_0$.
- **9.** Two variables, *x* and *y*, are connected by the equation $y = kx^n$. The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.

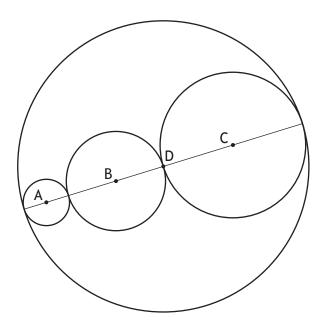


Find the values of *k* and *n*.

4

10. (a) Show that the points A(-7, -2), B(2, 1) and C(17, 6) are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.



The circles with centres A, B and C have radii $r_{\rm A}, r_{\rm B}$ and $r_{\rm C}$ respectively.

- $r_{\rm A} = \sqrt{10}$
- $r_{\rm B} = 2r_{\rm A}$
- $r_{\rm C} = r_{\rm A} + r_{\rm B}$
- (b) Determine the equation of the circle with centre D.

11. (a) Show that
$$\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x = \sin^3 x$$
, where $0 < x < \frac{\pi}{2}$.

(b) Hence, differentiate
$$\frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$$
, where $0 < x < \frac{\pi}{2}$.

[END OF QUESTION PAPER]